
ARTICLE IN PRESS
Pattern Recognition ( ) --

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.e lsev ier .com/ locate /pr

Automatic reconstruction of 3D human motion pose from uncalibrated monocular
video sequences based onmarkerless humanmotion tracking

Beiji Zou, Shu Chen∗, Cao Shi, Umugwaneza Marie Providence
School of Information Science and Engineering, Central South University, Changsha 410083, People's Republic of China

A R T I C L E I N F O A B S T R A C T

Article history:
Received 19 December 2007
Received in revised form 3 September 2008
Accepted 17 December 2008

Keywords:
3D human motion reconstruction
Human motion tracking from monocular
video sequences
Inverse kinematics
Human skeleton model
Camera model

We present a method to reconstruct human motion pose from uncalibrated monocular video sequences
based on the morphing appearance model matching. The human pose estimation is made by integrated
human joint tracking with pose reconstruction in depth-first order. Firstly, the Euler angles of joint are
estimated by inverse kinematics based on human skeleton constrain. Then, the coordinates of pixels in
the body segments in the scene are determined by forward kinematics, by projecting these pixels in
the scene onto the image plane under the assumption of perspective projection to obtain the region
of morphing appearance model in the image. Finally, the human motion pose can be reconstructed by
histogram matching. The experimental results show that this method can obtain favorable reconstruction
results on a number of complex human motion sequences.

Crown Copyright � 2009 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Human motion contains a wealth of information about actions,
intentions, emotions, and personality traits of a person and plays an
important role in many application areas, such as surveillance, hu-
man motion analysis, and virtual reality. It is a hot topic to track hu-
man joint and reconstruct the corresponding 3D human motion pos-
ture from an uncalibrated monocular video sequences, the human
motion pose reconstruction can be categorized into two groups: (1)
using multi-view video sequences, and (2) using monocular video
sequences. Reconstruction of human motion pose from monocular
video sequences is more attractive because it has many advantages
such as convenient to use, conveniently available to general public
and less restrictions. The depth value of an object will be lost when
the object is projected onto 2D image plane. Therefore, 3D motion
reconstruction from 2D motion sequences is still a challenging task.
The conventional methods to reconstruct human pose from monoc-
ular video sequences may require some restrictions or prior knowl-
edge. Rather than the classical algorithms, in this paper, we pro-
pose an approach to reconstruct the 3D human motion pose from
uncalibrated monocular video sequences by combining human joint
tracking and pose extraction, whose advantages include fewer con-
straints, without knowing the parameters of camera model, easy to
implement andmore precise performance of the pose reconstruction.
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Human pose reconstruction from monocular video sequences
is roughly divided into two categories: machine learning methods
and object tracking methods. Researchers propose the use of ma-
chine learning methods that exploit prior knowledge in gaining
more stable estimates of 3D human body pose [1–5]. However,
these methods require a large amount of samples which limit their
applications. Object tracking methods commonly follow two se-
quence steps: first, locating feature of human and tracking them
in each frame, then, reconstructing human pose by these obtained
features. Many researchers have conducted studies on the first step,
and general surveys can be found in recent review papers [6,7],
in this step, people always use the configuration in the current
frame and a dynamic model to predict the next configuration [8,9].
Most approaches perform prediction by variants of kalman filtering
[9,10] and particle filtering [11–13]. Particle filters restrict them-
selves to predictions returned by a motion model which is hard
to construct, such a scheme is susceptible to drift due to impre-
cise motion model that the predictions were worse. Annealing the
particle filter [14] or performing local searches [15] is the ways to
attack this difficulty. The second step is human pose reconstruction
(i.e., extracting 3D coordinates of feature from its corresponding
2D image coordinates). Some researchers reconstruct the human
motion pose from video sequences by using some constrains such
as human skeleton proportions based on camera model, these
methods can be classified into two classes depending on the cam-
era model adopted: (1) using affine camera model; and (2) using
perspective camera model. Affine camera model is only an ap-
proximation of the real camera model. Scaled-orthographic camera
model is an important instance of this kind and is popularly used
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bymany researchers [16,17]. The scale factor s has a significant effect
on the result of human motion pose reconstruction by using scaled-
orthographic camera model [16]. In these methods, the scale factor
s is estimated by satisfying a constrained formula, but not a ground
truth value; so the reconstructed human pose is great different from
the real human pose, and these methods can only handle images
with very little perspective effects. In addition, there are very limited
research efforts working on human pose reconstruction based on
perspective camera model [18–20]. Zhao et al. [20] restrict all body
segments of the human figure as almost parallel to the image plane in
order to acquire accurate human skeleton proportions. Peng requires
estimating the virtual scale factor for each frame [19].

The remainder of this paper describes our algorithm in more
detail. In Section 2, we explain the diagram of data flow in our system,
and in Section 3, we describe the initialization of our system. The
detail procedure to reconstruct human motion pose is described in
Section 4, while in Section 5, we illustrate results from our system.
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Fig. 1. Diagram of data flow in our system.
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Fig. 2. Morphing appearance model matching to extract human pose.

In the end of this paper, we conclude about this study and point out
the future further work.

2. Overview

The basic idea of our algorithm is to reconstruct 3D human pose
reconstruction from the corresponding 2D joints on the image plane.
The positions of human joints in each frame of the video are located
with a local search by using the technique of morphing appearance
model matching.

The proposed algorithm is divided into four major steps as shown
in Fig. 1. The first step is to initialize models by a simple user inter-
face with the first frame as input, the texture information and space
information about the appearance of body segments can be acquired
by marking projected landmarks of the subject's body on the im-
age plane, and the relative lengths of body segments in the human
skeleton model are also estimated.
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Next, the rotation Euler angles of its father joint are calculated
by using inverse kinematics (IK) following two steps: (1) estimating
the 3D coordinates of this joint by established camera model on the
base of human skeleton proportions constrains, (2) calculating the
Euler angles of its father joint by using IK based on the obtained 3D
coordinates of this joint.

In the third step, the 3D coordinates of pixels in body segments
of this joint are attached and after rotation they are calculated by
forward kinematics. The rotated degree of segments are determined
according to the Euler angles estimated in the second step, the pro-
jection of these pixels on the image plane consists of the morphing
appearance model of body segments.

In the last step, the histogram matching is used to match the
histogram of pixels in current frame with the histogram of pixels
in the appearance model. Then, the joints with the highest degree
of similarity are tracked as objects, and the human motion pose are
reconstructed simultaneously (Fig. 2).

3. Building models

3.1. Human skeleton model

We represent human body as a tree stick model, which is inspired
by the human body model employed at the Human Modeling and
Simulation Center at University of Pennsylvania [21]. As shown in
Fig. 3, the human skeleton model consists of rigid parts connected
by joints, in which, J1 is the root joint correspond to pelvis. Informa-
tion about other joints is provided in Table 1. Fig. 4 shows the tree
structure of human skeleton model. The relative lengths of human
body segments in the model are ratios of lengths which can obtained
from anthropomorphic measurement.

A local coordinate system is attached to each body part. The
orientation of local coordinate system is shown in Fig. 3, and the
origin of coordinates is located at the position of each joint. The
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Fig. 3. The human skeleton model.

Table 1
Information related to the joints of skeleton model.

ID J1 J2 J3 J4 J5 J6 J7 J8

Joint Pelvis Chest Clavicle Right shoulder Right elbow Right Wrist Left shoulder Left elbow

ID J9 J10 J11 J12 J13 J14 J15 J16

Joint Left wrist Right hip Right knee Right ankle Left hip Left knee Left ankle head

kinematics is represented by a transformation tree whose root is
the basic coordinate system and whose leaves are the coordinate
systems of head, hands, and feet. The origin of the basic coordinate
system is at the position of joint J1, and the orientation of it is always
the same as the local coordinate system of joint J1 in initial state.

3.2. Appearance model of people

As for human motion tracking by template matching, the line is
not a good selection for it contains little texture information. We
approximate the limbs as planar regions for the reason that there is
much color information on the body part, the appearance model of
people consists of shapemodel and texture model as predicted in Fig.
5. According to the human skeleton model, the appearance model
of people represented by 15 rectangles which correspond to body
segments, each rectangle contains not only information of pixels
inside it but also the coordinates of each pixel in local coordinate
system. As shown in Fig. 5, the middle line of each rectangle is the
skeleton in the human skeleton model, the middle point of the edge
in each rectangle is the joint in the human skeleton model. In Fig. 5,
we only marked joint J1, the other joints can be marked similarly.

3.3. Camera model

3.3.1. Projection model
Under perspective camera model, the coordinates of a point in

the scene, (x, y, z), can be related to the coordinates of its projection
in the image, (u,v), through

(
u
v

)
= 1

s

(
1 0 0
0 1 0

)⎛⎝x
y
z

⎞⎠ . (1)
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Fig. 4. The tree structure of human skeleton model.
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Fig. 5. This figure indicates how the appearance model of people built.

Fig. 6. A frame used to estimate the change of s corresponds to a unit change of z.
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Fig. 7. The projection of three linked segments onto an image under perspective
projection.

In this equation, the parameter s denotes an unknown scale factor
which is defined as: s = z/f , where z is the z-coordinate of the point
in the scene, f is the focal length of camera lens. From the definition
of s, we know that when z-coordinate changes, the scale factor s will
change linearly. The change of s, (ds), corresponding to the change
of z, (dz), can be formulated as T(dz) = ds.

3.3.2. Establishing the change of s corresponds to a unit change of z
Firstly, we need to locate a frame from video sequences, in which

three linked body segments with the first one and the last one par-
allel to the image plane. A general frame is shown in Fig. 6, in which
the right shoulder and the right upper arm are parallel to image. Fig.
7 shows the projection of these three linked body segments, onto
the image under perspective projection.

In this case, the segment ab and the segment cd are parallel to
the image plane, the projection of these two segments onto the
image are represented by a′b′ and c′d′, respectively. The segment
bc is not parallel to the image plane, the corresponding projection
onto image is represented by b′c′. The lengths of ab, bc and cd are
denoted as Lab, Lbc and Lcd, respectively, which can be obtained from

the performance's body segment proportions. The lengths of a′b′, b′c′

and c′d′ are denoted as La′b′ , Lb′c′ and Lc′d′ , respectively, and these
values can be calculated as follows, take a′b′ for example.

La′b′ =
√
(a′

x − b′
x)

2 + (a′
y − b′

y)
2, where (a′

x, a
′
y), (b

′
x, b

′
y) are the co-

ordinates of points a′ and b′ in the image, respectively.
The coordinates of point a in the scene are (ax, ay, az), and the

coordinates of other points in Fig. 7 are denoted similarly.
As the segment ab is parallel to the image plane, the projection

of segment ab onto Z-axis focus to the point M, the scale factor s
corresponds to the point M can be calculated as sab=OM/f =Lab/La′b′ ,
similarly, we get the corresponding scale factor s to the projection
point N of segment cd onto Z-axis as scd =Lcd/Lc′d′ . As the segment ab
and the segment cd are both parallel to the image plane,the distance
between the point M and the point N is dz which subject to the
following equation:

dz = cz − bz. (2)

According to the space geometry knowledge, Lbc satisfies the fol-
lowing equation:

√
(cx − bx)

2 + (cy − by)
2 + (cz − bz)

2 = Lbc

⇒
√
(cx−bx)

2+(cy − by)
2+dz2=Lbc

⇒
√
(scdc′

x−sabb′
x)

2+(scdc′
y − sabb′

y)
2+dz2=Lbc. (3)

As scd, sab, c′
x, b

′
x, c

′
y, b

′
y and Lbc are known; dz can be calculated by

Eq. (3). The absolute change of s, (|ds|), corresponding to the absolute
change of z, (|dz|), can be calculated as follows:

|ds| = abs(scd − sab). (4)

3.3.3. The relative 3D coordinates of segments estimation
Given the scale factor s of joint Ji is known as sJi . In the subsection

we will explain how to estimate the 3D coordinates of joint Ji+1 in
camera projection space.

According to the invariable length of segment, we can establish
the following equation:

√
(Jxi − Jxi+1)

2 + (Jyi − Jyi+1)
2 + (Jzi − Jzi+1)

2 = Li

⇒
√
(Jxi − Jxi+1)

2 + (Jyi − Jyi+1)
2 + (�z)2 = Li

⇒
√
[sJi · Jxi′−(sJi + �s)·Jxi+1′ ]

2+[sJi ·Jyi′−(sJi+�s) · Jyi+1′ ]
2+(�z)2 = Li

⇒
√
[sJi ·Jxi′−(sJi+T(�z))·Jxi+1′ ]

2+[sJi · Jyi′−(sJi+T(�z))·Jyi+1′ ]
2+(�z)2=Li.

(5)
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Fig. 8. The projection of an articulated object onto an image under perspective
projection.

where Li is the relative length of the segment Li. (Jxi , J
y
i , J

z
i ),

(Jxi+1, J
y
i+1, J

z
i+1) are the coordinates of Ji and Ji+1 in the projection

space, respectively. (Jxi′ , J
y
i′ ), (J

x
i+1′ , J

y
i+1′ ) are the coordinates of their

projection of Ji and Ji+1 in the image, respectively. �z is the rela-
tive depth between Ji+1 and Ji, �z = Jzi+1 − Jzi . Eq. (5) is a quadratic
equation of one variable �z. Thus, there are three different kinds of
solutions for this equation: only one real number, two real numbers,
and imaginary number, according to the relative position between
line and sphere in projection space. In case of two real numbers,
we should choose one of these two real numbers as the ground
truth. We establish the projection coordinate system as in Fig. 8, the
origin of coordinate axes is O, Z-axis through the center of image
and the positive direction direct to object. According to definitions
of �z and s, we choose �z as a negative number while Ji+1 is nearer
than Ji to the image plane. Otherwise, we choose �z as a positive
number. Fig. 8 shows the situation of intersection of the line and
the sphere, in this case, �z is only one negative real number.

Since we have calculated �z from Eq. (5), the scale factor sJi+1

corresponds to the joint Ji+1 can be obtained as sJi+1 = sJi + T(�z).
The coordinates of Ji and Ji+1 in the projection space can be cal-

culated as

Jxi = sJi · Jxi′ ,
Jyi = sJi · Jyi′ ,
Jxi+1 = sJi+1 · Jxi+1′ ,

Jyi+1 = sJi+1 · Jyi+1′ . (6)

4. Initialization

The problem can be decomposed into three sub-problems: the
estimation of the relative lengths of body segments in the human
skeleton model, the initialization of appearance model of people and
the estimation of the scale factor s correspond to root joint.

We have developed a graphical user interface that allows the
user to select the projection of joints of the subject's body in the
first frame. A marked image is shown in Fig. 9, in which the green
dots depict all selected joints while the yellow rectangles depict
the position of body segments. The body configuration in the first
frame is assumed as follows: human in a standing position, facing
the +Z direction, the arms should be straight and parallel to the
sides of the body. As shown in Fig. 9, the color information of pixels
in these rectangles is served as the color model for the matching of
subsequent frames used in Section 5.3.

4.1. Estimation of the relative lengths of body segments in the human
skeleton model

Although the relative lengths of skeletons obtained by anthro-
pometry are reliable, the positions of marked joints in the image
may not be the ground truth. So we estimate the proportions of per-
former's skeletons by refer to the length of segment L5.

Fig. 9. The image to indicate the marked result.

We set L5 as the length of segment L5 which can be obtained
by anthropometric measurements. The length of L5 projected onto
image plane is denoted as L5′ which can be calculated as L5′ =√
(Jx5′ − Jx6′ )

2 + (Jy5′ − Jy6′ )
2, where (Jx5′ , J

y
5′ ) and (Jx6′ , J

y
6′ ) are the image co-

ordinates of J5 and J6. As the whole body parallels to the image plane,
all joints in the image correspond to a same scale factor s: s= L5/L5′ .

As the lengths of other segments in the image Li′ is calculated,
the relative lengths of these segments in the human skeleton model
can be obtained as Li = s · Li′ .

4.2. Initialization of the appearance model of people

As we explained in Section 3.2 that the appearance of people
consists of pixels in body segments, the value of pixels can obtained
from marked rectangle in the image. The spatial information about
pixels is represented by their local coordinates. Given the local image
coordinates of a pixel are (x, y), the local coordinates of this pixel in
the scene can be obtained as (s · x, s · y, 0).

5. Human motion tracking by template matching

The human motion tracking is performed with a local search in
the image by template matching. The whole tracking is decomposed
into three steps: (1) the estimation of rotation Euler angles based on
the coordinates of joint candidate, (2) estimating the coordinates of
the pixels of appearance model in the scene after rotation by forward
kinematics based on estimated Euler angle, and (3) estimating the
region of morphing appearance model by projecting these pixels
onto the image plane, then reconstructing the human motion pose
by histogram matching.

The 3D humanmotion pose and projected location of joints on the
image plane are estimated in depth-first order as shown in Fig. 4. The
coordinates of the child joint should be estimated with local search
after estimation of the coordinates of the father joint. So the key to
estimate the human motion pose is to estimate the coordinates of
root joint firstly.

As we know, an adjacent area with the root joint at the center will
not deform during humanmotion, we can estimate the coordinates of
root joint with local search by template matching, and the template
is established by the rectangle with root joint at the center.

In our system, we assume that joint J1 moves parallel to the image
plane without Z direction displacement. So that the scale factor s
calculated in Section 4.1 can be used as the scale factor s of root joint
in whole video sequences.

5.1. Estimating rotation Euler angles

Given the image coordinates of a joint candidate are known, the
scale factor s of its father joint is also estimated. We can estimate the
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depth difference �z between these two joints and their coordinates
of x, y in the scene as explained in Section 3.3.3.

As shown in Fig. 3, the local coordinates of joints can be obtained
as follows: the vector of J2 in J1 local coordinate system is [0, L1, 0],
the vector of J3 in J2 local coordinate system is [0, L2, 0], the vector
of J4 in J3 local coordinate system is [−L3, 0, 0]. The vector of other
joints can be obtained similarly.

We assume that the order of joint rotation as Z–Y–X Euler angles,
� is around the Z-axis, � is around the Y-axis, � is around the X-axis.

Step 1: Estimation of the Euler angles of joint J1. The function
of torsional moment is not considered in 3D data. As a result, the
motion component around the Y-axis is zero and �=0. Let 01R denotes
the rotation matrix that transforms a vector in J1 local coordinates
into basal coordinates, which is defined as

0
1R =

⎡⎣cos� − sin� 0
sin� cos� 0
0 0 1

⎤⎦⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦⎡⎣1 0 0
0 cos � − sin �
0 sin � cos �

⎤⎦
=
⎡⎣cos� − sin� cos � sin� sin �
sin� cos� cos � − cos� sin �
0 sin � cos �

⎤⎦ . (7)

According to the kinematics knowledge, the relation between
local coordinates and projection coordinates of L1 is given by the
following equation:

0
1R

⎡⎣ 0
L1
0

⎤⎦=

⎡⎢⎢⎣
Jx2 − Jx1

Jy2 − Jy1

Jz2 − Jz1

⎤⎥⎥⎦=

⎡⎢⎢⎣
Jx2 − Jx1

Jy2 − Jy1

�z

⎤⎥⎥⎦ , (8)

where the vector [0, L1, 0] is the coordinates of J2 in J1 local coordinate
system, the vector [Jx2 − Jx1, J

y
2 − Jy1, J

z
2 − Jz1] is the coordinates of J2 in

the basic coordinate system.
Substituting 0

1R into the above equation yields equations as:⎧⎪⎪⎨⎪⎪⎩
sin� cos � = Jx1−Jx2

L1
,

cos� cos � = Jy1−Jy2
L1

,

sin � = �z
L1
.

(9)

By solving it, the value of � and � can be obtained as

� = arcsin
(

�z
L1

)
, � = − arctan

(
Jx2 − Jx1
Jy2 − Jy1

)
. (10)

Step 2: The estimation of the Euler angles of joint Ji. We assume
that the rotation matrix that transforms a vector in Ji−1 local coor-
dinates into basal coordinates has been obtained.

0
i−1R = 0

1R
1
2R

2
3R . . . i−2

i−1R, (11)

where 0
1R,

1
2R, etc. are the rotation matrices between two coordinate

system which attached to two consecutive joints in the access route
from J1 to Ji−1.

The relation of coordinates of Ji+1 in Ji local coordinate system
and coordinates of Ji+1 in basic coordinate system can be written as

0
i RPi+1 = P

⇒ 0
i−1R

i−1
i RPi+1 = P,

P =
⎡⎣ Jxi+1 − Jxi
Jyi+1 − Jyi
Jzi+1 − Jzi

⎤⎦ , (12)

where Pi+1 is the coordinates of Ji+1 in Ji local coordinate system
which has been explained in the beginning of this section, P is the
coordinates of Ji+1 in basic coordinate system (only rotation, not

include displacement), and i−1
i R is the rotation matrix that used to

rotate the Ji local coordinate system to the Ji−1 local coordinate sys-
tem. i−1

i R can be represented in two forms. In the case of segment
Li perpendicular to X-axis, i−1

i R is defined as 0
1R, just like L2, L4, L7,

etc.; otherwise, due to the motion component around the X-axis is
zero, thus, � = 0, and i−1

i R is defined as

i−1
i R =

⎡⎣cos� − sin� 0
sin� cos� 0
0 0 1

⎤⎦⎡⎣ cos� 0 sin�
0 1 0

− sin� 0 cos�

⎤⎦⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ . (13)

As L3 is parallel to X-axis, i−1
i R used in the reconstruction of right

clavicle pose is a case in point. Others include L6, L9, and L12.
By solving Eq. (12), the Euler angles of Ji can be obtained.

5.2. Estimating the projected region of segments after rotation

We assume that the Euler angles calculated in Section 5.1 are
(�,�, �), the coordinates of its father joint in the scene are (Jxi−1, J

y
i−1),

and the scale factor s of its father joint is sJi−1 . The coordinates of
pixels in the corresponding body segment in the scene after rotation
can be determined as follows:⎡⎣xr
yr
zr

⎤⎦=
⎡⎣cos� − sin� 0
sin� cos� 0
0 0 1

⎤⎦⎡⎣ cos� 0 sin�
0 1 0

− sin� 0 cos�

⎤⎦
×
⎡⎣1 0 0
0 cos � − sin �
0 sin � cos �

⎤⎦⎡⎣xl
yl
0

⎤⎦ . (14)

Given the local coordinates of pixels in the appearance model
are (xl, yl, 0) which can be obtained from initialization as explained
in Section 4.2, the local coordinates of pixels after rotation can be
obtained by the above equation.

So the x, y coordinates of pixels in the scene can be calculated as[
xp
yp

]
=
[
Jxi−1
Jyi−1

]
+
[
xr
yr

]
. (15)

The scale factor s of pixels is calculated as sp = sJi−1 + T(zr).
Therefore, the image coordinates of these pixels can be obtained

as (xp/sp, yp/sp).

5.3. Template matching

As explained in Section 4, the color information of pixels in this
segment can be obtained, we define the color histogram of it as a
reference one which is denoted as H1. From the above explanation,
given a joint candidate, we can obtain the projected region of this
body segment on the image plane based on the location of this joint
candidate. Fig. 10 shows the result, andwe define the color histogram
of the projected region as a comparative one which is denoted as H2.
The similarity between the reference histogram and the comparative
one is defined as

d(H1,H2) =
√
1 −

∑
i

√
H1(i) · H2(i), (16)

where H1(i), H2(i) are the corresponding component in H1 and H2,
respectively.

The joint candidate which satisfies the following formula will
be determined as the expected one, and the estimated Euler angles
corresponding to this joint candidate will be the reconstructed pose:

p̂ = arg min{d(H1,Hi), i ∈ A}, (17)
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Fig. 10. This figure indicates the result of projected right leg block on the image plane
under three joint candidates and determination of the expect one by local search.
The dot rectangle indicates the search region, the red dot indicates the search center,
and the green dot is the expected location of the joint. The corresponding Euler
angles are estimated as the pose of this joint. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

where A is the search region defined as

A = {(x, y), |x − x0|�h, |y − y0|�h}, (18)

h= 1.5×max{|xi − xi−1|, |yi − yi−1|}, where (xi, yi), (xi−1, yi−1) are the
coordinates of this joint on the image plane estimated in the last
frame and in the frame before last frame. (x0, y0) is the search center
which can be obtained by the projection of this joint on the image
plane as explained in Section 5.2. In this situation, the input Euler
angles (�,�, �) are set as the rotation Euler angles of this joint esti-
mated in the last frame, and (xl, yl, 0) are set as the local coordinates
of this joint as explained in Section 5.1. The estimated image coor-
dinates of this joint are obtained as (x0, y0).

Based on the estimated Euler angles, the x,y coordinates in the
scene and scale factor s of this joint can be obtained by the method
explained in Section 5.2. Then they are fed to the next procedure as
inputs to estimate the rotation Euler angles of its son joint.

6. Experiments with real sequences

To test the proposed contribution, we measure 3D human mo-
tion pose on the same subject while the joints in the image were
manually marked or located by semi-automatic tracking. In the first
experiment, we present results to show how the imprecise estima-
tion of T(dz) affects the result of human motion pose reconstruction,
and discuss which factors affect the precise estimation of T(dz). The
second experiment is performed to test the effectiveness of the pro-
posed 3D joint points estimation from the projection of these points
on the image plane. In this experiment, the location of joints was
manually marked. The third experiment shows the tracking for a test
sequences in which the subject's left hand moves in a decreasing
spiral. In the last experiment, we present the comparative results
as compare the proposed method to the scaled-orthographic projec-
tion method. In these experiments, the corresponding reconstructed
human poses are all demonstrated by a virtual human.

The test video sequences were captured by a stationary Samsung
digital camera (S600) with a temporal sampling rate of �t = 1

30 s
and the resolution of 640 × 480. During the sequences the player
moves parallel to image plane without z displacement. The relative

Table 2
Values used for the relative lengths of the segments in human figure.

Segment Relative length

Lower torso (L1) 20
Upper torso (L2) 34
Right/left clavicle (L3/L6) 21
Right/left upper arm (L4/L7) 21
Right/left lower arm (L5/L8) 24
Right/left hip (L9/L12) 10
Right/left thigh (L10/L13) 30
Right/left leg (L11/L14) 36
Neck (L15) 20

lengths of segments in the human skeleton model were manually
obtained from the measurements of the performer's body. Table 2
indicates the values that were used for the various segments. In these
experiments, as shown in the first image in Fig. 11, we select the
right clavicle, the right upper arm, and the right lower arm as three
linked body segments to estimate the change of s corresponds to a
unit change of z. Four paper markers have been stuck on the location
of joints in order to locate the joints correctly.

6.1. How the precision on the estimation of T(dz) affect the result of
human pose reconstruction

It is important to note that imprecision on the estimation of T(dz)
may greatly affect the results of human pose reconstruction. In this
section, some experiments for quantifying the influence of this es-
timation on the final results are presented. As shown in Fig. 11, we
use three different precise joints locations to estimate the change
of s corresponds to a unit change of z. The first image indicates the
marked joint location with the highest precision. In the second im-
age, the location of joints varies a little from the ground truth, and
in the third image, the pixel error between marked joints and the
corresponding ground truth is very great. Fig. 12 shows the results
of human pose reconstruction under these three different estima-
tion of T(dz). We observe that the more precision on estimation of
T(dz), the higher degree of similarity between the original human
pose and the reconstructed one. Given the pixel error between the
marked joints position and the ground truth, the precision on the
estimation of T(dz) will depend on some factors including camera
resolution and the distance between the subject and the camera,
etc. The higher resolution the digital camera is, the more precise the
estimation of T(dz) will be, and the nearer the subject close to the
digital camera, the more precise the estimation of T(dz) will be.

6.2. Reconstructing the human pose while the location of joints are
manually marked

To test the effectiveness of our proposed 3D human pose recon-
struction from the corresponding 2D joints on the image plane, in
this experiment, the performer in the test video sequences was out-
fitted with markers which enable us to locate the joints of the figure
more accurate, and the position of joints on the image plane were
manually labeled. Fig. 13 depicts the very encouraging reconstructed
results. From the results, we can see that the reconstruction gener-
ated is highly satisfiable.

6.3. Reconstructing the human pose by automatic tracking

In this experiment, the human motion tracking is done on the
input video sequences without preprocessing, and presume that the
rotation Euler angles of hips to be zero to eliminate the negative
influence of inaccurate estimation of root joint position on the image

Please cite this article as: B. Zou, et al., Automatic reconstruction of 3D human motion pose from uncalibrated monocular video sequences based on
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Fig. 11. Images to be used for estimation of the T(dz). The corresponding change of s corresponds to a unit change of z in these three images were estimated as
0.0011730575008468, 0.0023854678824606 and 0.0049679396543650, respectively.

Fig. 12. Results of 3D human pose reconstructing under different estimation of T(dz). The left most column is the result of reconstruction under the estimation of T(dz)
from the first image in Fig. 11, the middle column and the right most column are the results of reconstruction under the estimation of T(dz) from the second image and
the third image in Fig. 11, respectively. (a) Original image. (b) The reconstructed human pose from the front view. (c) The reconstructed human pose from the side view.

plane. The experimental results are based on a total of 300 video
frames, and some of the reconstructed 3D human poses are presented
in Fig. 14. Part (a) depicts the tracked frames, part (b) shows the

rectangles of human body parts projected on the original images,
part (c) shows reconstructed results simulated by the virtual human,
and a rendered 3D side view is shown in the part (d) to illustrate
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Fig. 13. 3D reconstruction of human pose by proposed algorithm. (a) Original images. (b) 3D reconstruction rendered from similar viewpoint. (c) Rendering from viewpoint
rotated 45◦ .

the estimated relative depth. From the results, we can see that pose
accuracy varies over frames, but rough body pose is for the most part
visually accurate. The local errors in these reconstructed sequences,

mostly due to illumination change and imprecision estimation of
T(dz). The error will increase when the segment is far from the root
joint in human skeletonmodel, e.g., the estimated angle error of right
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Fig. 14. Results of reconstruction of 3D human pose from the test video sequences in which the subject's left arm moves in a decreasing spiral (every 15th frame from 15
to 300 arranged from left to right, top to bottom). (a) Tracked frames. (b) The projection of expected model configuration on the original images. (c) Reconstructed human
poses from the front view. (d) Reconstructed human poses from the side view.
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Fig. 15. Comparative plots of some joint locations obtained from tracking and manually labeled ground truth data. Blue solid plots indicate the pixel error in x-coordinate
while red dot plots indicate the pixel error in y-coordinate. (a) J9. (b) J12. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

leg is bigger than the one of right thigh, and we notice that the error
will be great when the human parts rotate drastically which can be
seen on the estimated pose of right upper arm in frame 300th.

To quantify the accuracy of the tracking, we report the pixel er-
ror between the estimated location of joints in image and its cor-
responding, manually labeled, ground truth data in Fig. 15. Part (a)
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Fig. 16. The variation of relative depth value during human motion. (a) Left lower arm. (b) Right lower leg.
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Fig. 17. The reconstructed motion trajectory of some human parts. Red solid plots indicate the estimated � angle of a segment while green dot plots indicate the estimated
� angle of the segment. (a) Left lower arm. (b) Right lower leg. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

shows the result of joint J9 while part (b) shows the result of joint
J12. From these images, we can see that the most pixel error is lim-
ited to ±15. The peak of error is about from frame 50th to 150th; the
reason is that the inaccurate estimated pose of lower torso and up-
per torso greatly affect the estimation of 2D position of these joints.

Fig. 16 depicts the whole variation of relative depth value (dz)
during the humanmotion. The obtained dz is the relative value under
human skeleton model as shown in Table 2. The total trajectory of
dz estimated on the left lower arm is mostly smooth while there
are some drastically changes on estimation of dz on right lower leg.
The reason for this is because the imprecise estimation on the right
upper leg causes a great error on the estimation of right lower leg.

Fig. 17 shows the extraction of Euler angles during the three
hundred frames for left lower arm and right lower leg. Part (a) shows
the reconstructed trajectory of left lower arm in which we can see
that the � angle of it increase from 0◦ to 360◦, part (b) shows the
reconstructed trajectory of right lower leg. The picture denotes the
left lower arm of subject moves in a circle. From Fig. 17, we note that
the reconstructed trajectory of human motion is plausible although
it failed to various extents on some frames maybe due to the change
of illumination or fault selection of �z, and the error occurred in the
human pose reconstruction of previous frame will not impact that
of next frame.

From this experiment, we know that the reconstruction efficiency
of the proposed algorithm depends on a number of factors includ-
ing the accuracy of the change of scale factor s corresponds to a unit
change of z, the accuracy with the projections of the joints can be lo-

(x2, y2, z2)
dz

L

L

Reference plane

y

O

x

(x2, y2, z2)

(x1, y1, z1)

Fig. 18. Different project models.

cated in the image, and the accuracy of the estimates for the relative
length of the segments in the human skeleton model.

6.4. Comparison to scaled orthographic projection

In Section 6.2 we have shown that the proposed method to esti-
mate depth value can present encouraging reconstructed results. To
prove the efficiency of the proposed method we will compare it to
the widely used scaled orthographic projection [16,22]. The accuracy
of both methods was compared for a challenging test sequence.

The test sequence (90 frames) shows a person performing full
articulation. Some frames are shown in Fig. 19. First, the person hits
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Fig. 19. Comparison between scaled orthographic projection method and the proposed method. The first three rows show the poses for six frames (15, 30, 45, 60, 75,
90) obtained under scaled orthographic projection. The results for the proposed method are shown in the last three rows. (a) Reconstructed results estimated by scaled
orthographic projection. (b) Reconstructed results estimated by the proposed method.

with a sweeping motion of the arm and then he kicks with both legs
and keeping the arms in a defensive manner close to the upper body.
The tracker must be able to keep the arms separated from the torso
and should survive the fast motions.

The scale factor, s, used in the scaled orthographic projection was
obtained from the scale factor s corresponding to root joint J1. For our
comparison with scaled orthographic projection, the same histogram
matching was used. Two human tracking were both performed on
the original images.

Our proposed method to estimate depth value was successful in
tracking the whole sequences as can be seen for the six selected
frames in Fig. 19. The scaled orthographic projection was not able to
track the sequences with the same efficiency. The reason for this is
that the depth value between two adjacent joints estimated by the
scaled orthographic projection is not a ground truth. Fig. 18 demon-
strates the differences between scaled orthographic projection and
perspective projection, the blue line and the red line represent the
reconstructed object under perspective projection and scaled ortho-
graphic projection, respectively, dz denotes the difference between
the two depth values reconstructed under perspective projection
and scaled orthographic projection. Since the depth value estimated

by scaled orthographic projection deviate from the ground truth,
the estimated Euler angles of joints will deviate from the ground
truth accordingly. Therefore, the obtained degree of similarity is in-
accurate while the template is projected onto the image plane, and
the tracked joints will deviate from the corresponding ground truth
ones.

The tracking accuracy was done by comparing the resulting pixels
coordinates of both methods to the ground truth data. Table 3 shows
the computed average pixel errors for both methods over the test
sequences. The average pixel error is defined as

The average pixel error =
∑90

i=1

√
(xi − x′

i)
2 + (yi − y′

i)
2

90
(19)

where (xi, yi) are the coordinates of manually labeled ground truth
joints in the ith frame, (x′

i, y
′
i) are the estimated coordinates of joints

in image in the ith frame. As shown in Table 3 there is some improve-
ment in results for the proposed method compared to the scaled
orthographic projection method.
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Table 3
The average pixel error for both methods over the test sequences.

Joint Average pixel error

Scaled orthographic projection Proposed method

Right elbow 14.3423 10.4453
Right wrist 17.1907 13.5435
Right knee 16.6745 10.1255
Right ankle 20.3454 14.4012
Left elbow 12.6864 8.6904
Left wrist 14.2345 10.4528
Left knee 15.5623 11.4576
Left ankle 23.8068 14.8504

7. Conclusion and future research

We proposed an algorithm to automatically reconstruct 3D hu-
man motion pose from uncalibrated monocular video sequences. A
key feature of our approach is the proposed method to reconstruct
3D human pose from the corresponding 2D joints on the image plane.
In the experiments, the human 3D pose reconstruction is accom-
plished automatically or manually.

There are several advantages of the proposed approach. First, no
camera calibration is needed as required by previous approaches
that use multiple-camera setups. Second, the approach exploits
invariance of skeleton constrains and morphing appearance model
matching to obtain better 3D structure estimates. Finally, the
method requires no special constrains to background.

In future, we intend to enhance the flexibility of this algorithm
enable it to handle human motion in Z direction displacement. Fur-
thermore, our work will focus on automatic locating the position of
joints in the first frame.
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